

$\mathcal{H}VIDIA_{\text{m}}$

Reflective Bump Mapping

Cass Everitt
NVIDIA Corporation
cass@nvidia.com

Overview

- Review of per-vertex reflection mapping
 - Bump mapping and reflection mapping
- Reflective Bump Mapping
 - Pseudo-reflective bump mapping
 - Offset bump mapping, or EMBM (misnomer)
 - Tangent-space support?
 - Common usage
 - True Reflective bump mapping
 - Simple object-space implementation
 - Supports tangent-space, and more normal control

Per-Vertex Reflection Mapping

- Normals are transformed into eye-space
- "u" vector is the normalized eye-space vertex position
- Reflection vector is calculated in eye-space as

$$\mathbf{r} = \mathbf{u} - 2\mathbf{n}(\mathbf{n} \bullet \mathbf{u})$$

Note that this equation depends on \mathbf{n} being unit length

- Reflection vector is transformed into cubemapspace with the texture matrix
 - Since the cubemap represents the environment, cubemap-space is typically the same as worldspace
 - OpenGL does not have an explicit world-space, but the application usually does

Per-Vertex Reflection Mapping Diagram

Bump Mapping and Reflection Mapping

- Bump mapping and (per-vertex) reflection mapping don't look right together
 - Reflection Mapping is a form of specular lighting
 - Would be like combining per-vertex specular with per-pixel diffuse
 - Looks like a bumpy surface with a smooth enamel gloss coat
- Really need per-fragment reflection mapping
 - Doing it right requires a <u>lot</u> of high-precision perfragment math!

Pseudo-Reflective (offset) Bump Mapping

- Correct per-fragment reflection mapping requires
 - Dependent texturing support
 - Complex (expensive) per-fragment math
- Solution: approximate the math
 - This approach is (unfortunately) called "Environment Map Bump Mapping" or EMBM
 - The environment map is a 2D texture, and the "bump map" texture supplies a per-fragment perturbation to the environment map
 - Offset texturing is implemented using the OFFSET_TEXTURE_2D texture shader operation on GeForce3

Example

What are Offset Texture Shaders? (1)

k₀, k₁, k₂ and k₃ define a *constant* 2x2 "offset matrix" set by glTexEnv

What are Offset Texture Shaders? (2)

Texture Coords <u>Shader</u> <u>Texture</u> **Bound Texture Output** (S,T,R,Q) **Operations** <u>Fetch</u> Target/Format Color 2D DSDT **Texture** $\left(\frac{S_0}{Q_0}, \frac{T_0}{Q_0}\right)$ $(S_0,T_0,R_0,Q_0) \rightarrow$ 2D

> (ds,dt)2D Any Format

 \rightarrow (0,0,0,0)

 $ightharpoonup R_1G_1B_1A_1$

 $S_1' = S_1 + k_0^* ds + k_2^* dt$ $T_1' = T_1 + k_1^* ds + k_3^* dt$ (S_1', T_1') (S_1,T_1)

k₀, k₁, k₂ and k₃ define a *constant* 2x2 "offset matrix" set by glTexEnv

DSDT Texture Format

- GL_DSDT_NV
 - This format encodes an offset vector in texture space
 - ds and dt are mapped to the range [-1,1]

The constant 2x2 texel transform matrix

Per-stage 2x2 matrix (O) transforms the [ds,dt]^t before biasing the incoming (s,t)

 Offset texture 2D matrix should also include scaling since ds and dt are low precision

Why the 2x2 matrix?

When texels have <u>spatial meaning</u> the orientation of the surface matters!

dimple effect

object rotation changes dimple to vortical distortion!

object rotation with dimple effect requires 2x2 transform per-texel

Limitations of the constant 2x2 matrix

 The constant 2x2 matrix limits the usefulness of this technique to flat objects.

Correct

Per-Vertex 2x2 Texel Matrix (using DOT_PRODUCT_TEXTURE_2D)

Constant 2x2 Texel Matrix (using OFFSET_TEXTURE_2D)

Other Limitations of Pseudo-Reflective Bump Mapping

- It simply applies a per-fragment perturbation to a 2D reflection map lookup
- If perturbation is too great, weird results...

normal bump scale

large bump scale

True Reflective Bump Mapping

- True reflective bump mapping solves the shortcomings of offset bump mapping by evaluating the reflection equation per-fragment
 - More complicated than you might think...
 - Must transform normals into cubemap space perfragment (3x3 texel matrix)
 - Must interpolate cubemap space eye vector
 - Per-fragment reflection vector looked up into cube map

Example

Basic shader configuration

- This is the standard configuration for reflective bump mapping with NV_texture_shader
- The normal map can be HILO or RGB
 - -stage0: TEXTURE_2D
 - texture image is normal map
 - -stage1: DOT_PRODUCT
 - no texture image
 - -stage2: DOT_PRODUCT
 - no texture image
 - -stage3: DOT_PRODUCT_REFLECT_CUBE_MAP
 - texture image is cubic environment map

Object-Space Reflective Bump Mapping

- The dot_product_reflect demo renders a single bumpy, reflective quad
 - Normal map defined in <u>object-space</u>
 - Cubic environment map space is same as eyespace in this example
 - Reflection vector is calculated per-pixel

Reflective Bump Mapping

Rendering

- The normal vector and eye vector must be transformed into cubemap-space (which is the same as eye space in this example)
 - Normal vector is multiplied by the upper 3x3 of the inverse transpose of the MODELVIEW matrix, the same as object-space per-vertex normals are treated for per-vertex lighting in OpenGL
 - The eye vector is calculated per-vertex, and because the eye is defined to be at (0,0,0) in eyespace, it is simply the negative of the eye-space vertex position

Rendering (2)

 Given the normal vector (n') and the eye vector (e) both defined in cubemap-space, the reflection vector (r) is calculated as

$$\mathbf{r} = \frac{2\mathbf{n}'(\mathbf{n}' \bullet \mathbf{e})}{(\mathbf{n}' \bullet \mathbf{n}')} - \mathbf{e}$$

- The reflection vector is used to look into a cubic environment map
- This is the same as per-vertex cubic environment mapping except that the reflection calculation <u>must</u> happen in cubemap-space

Details (for dot_product_reflect)

- The per-vertex data is passed in as the texture coordinates of texture shader stages 1, 2, and 3
 - The upper-left 3x3 of the inverse transpose of the modelview matrix (M^{-T}) is passed in the s, t, and r coordinates
 - note: $M^{-T} \equiv M$ for rotation-only matrices
 - The (unnormalized) eye vector (e_x, e_y, e_z) is specified per-vertex in the q coordinates

$$(s_1, t_1, r_1, q_1) = (M^{-T}_{00}, M^{-T}_{01}, M^{-T}_{02}, e_x)$$

 $(s_2, t_2, r_2, q_2) = (M^{-T}_{10}, M^{-T}_{11}, M^{-T}_{12}, e_y)$
 $(s_3, t_3, r_3, q_3) = (M^{-T}_{20}, M^{-T}_{21}, M^{-T}_{22}, e_z)$

"True Reflective Bump Mapping"?

- Unlike the "EMBM" technique, this method performs <u>real</u> 3D vector calculations <u>per-pixel</u>!
 - Calculations:
 - Transform of the normal map normal (n) by the texel matrix (T) to yield (n')

$$\mathbf{n'} = \mathbf{T}\mathbf{n}$$

• Evaluation of the reflection equation using n' and e

$$\mathbf{r} = \frac{2\mathbf{n}'(\mathbf{n}' \bullet \mathbf{e})}{(\mathbf{n}' \bullet \mathbf{n}')} - \mathbf{e}$$

Note that this equation does not require n' to be normalized

- The resulting 3D reflection vector is looked up into a cubic environment map
 - This IS true reflective bump mapping

dot_product_reflect Results

A screen shot from the running demo

Tangent-Space Reflective Bump Mapping

- The dot_product_reflect_torus demo renders a bumpy, reflective torus
 - Normal map defined in <u>tangent-space</u>
 - Cubemap-space is same as eye-space
 - Reflection vector is calculated per-pixel

Reflective Bump Mapping

(in dot_product_reflect_torus)

Rendering

- The texture coordinates are the same in this example as in dot_product_reflect, with the notable exception that the surface-local transform (S) must also be applied to the normals in the normal map
 - Normal vector is multiplied by the product of the upper-left 3x3 of the inverse transpose of the MODELVIEW matrix (M^{-T}) and the matrix (S) whose columns are the tangent, binormal, and normal surface-local basis vectors

Rendering (2)

 The texel matrix (T) is defined as the product of the upper-left 3x3 of the inverse transpose of the modelview matrix (M^{-T}) and the surface-localspace to object-space matrix (S)

$$\mathbf{T} = \mathbf{M}^{-T} \mathbf{S} = \begin{bmatrix} M_{00}^{-T} & M_{01}^{-T} & M_{02}^{-T} \\ M_{10}^{-T} & M_{11}^{-T} & M_{12}^{-T} \\ M_{20}^{-T} & M_{21}^{-T} & M_{22}^{-T} \end{bmatrix} \begin{bmatrix} T_x & B_x & N_x \\ T_y & B_y & N_y \\ T_z & B_z & N_z \end{bmatrix}$$

dot_product_reflect_torus Details

 The texel matrix (T) and eye vector (e) are specified in the texture coordinates of stages 1, 2, and 3

$$(s_1, t_1, r_1, q_1) = (T_{00}, T_{01}, T_{02}, e_x)$$

 $(s_2, t_2, r_2, q_2) = (T_{10}, T_{11}, T_{12}, e_y)$
 $(s_3, t_3, r_3, q_3) = (T_{20}, T_{21}, T_{22}, e_z)$

dot_product_reflect_torus Results

A screen shot from the running demo

Related Information

- See the bumpy_shiny_patch presentation and demo for
 - Using NV_evaluators
 - Tangent-space reflective bump mapping
 - NV_vertex_program for performing setup

Questions, comments, feedback

- Cass Everitt, cass@nvidia.com
- www.nvidia.com/developer